Veiligheid en gezondheid met betrekking tot het lasproces

Lassen wordt regelmatig gedaan in de metaaltechniek en de werktuigbouwkunde. Doormiddel van lassen worden metalen of kunststoffen onlosmakelijk aan elkaar verbonden. Er zijn verschillende lasprocessen die in de praktijk door een lasser kunnen worden uitgevoerd. De keuze van het lasproces is afhankelijk van de metaalsoort, de materiaaldikte en de kwaliteitseisen die aan het werkstuk worden gesteld. Lassen is een productieproces dat niet zonder risico’s is voor de lasser zelf en zijn of haar naaste omgeving. Daarom moet een lasser een aantal veiligheidsvoorschriften goed in acht nemen.

Veiligheid en gezondheid bij lasprocessen bevorderen
Het bevorderen van veilig werken tijdens het lassen is belangrijk om letsel te voorkomen. Tijdens het lassen kunnen gloeiendhete metaalspetters vrijkomen die brandwonden kunnen veroorzaken. Daarom is het belangrijk dat lassers zich goed tegen deze lasspetters beschermen. Brandwerende handschoenen die speciaal voor lassers zijn ontworpen moeten daarom te allen tijde door lassers worden gedragen. Ook brandwerende of brandvertragende kleding voor lassers is verplicht. De isolatie van de handschoenen van de lasser en het schoeisel van de lassers is extra belangrijk bij elektrische lasprocessen.

In de directe omgeving van de lasser mag tijdens het lassen geen brandbaar materiaal aanwezig zijn. Door de lasspetters kan brandbaar materiaal zoals karton of synthetische kleding eenvoudig vlam vatten. Hierdoor kan een grote brand ontstaan.

Verder dient de lasser rekening te houden met schadelijke gassen die tijdens het lasproces vrijkomen. Lasrook dient doormiddel van een goede afzuiginstallatie van de werkplek van de lasser weggezogen te worden.

Tot slot dient de lasser zijn of haar ogen te beschermen tegen het felle licht dat tijdens het lasproces vrijkomt. Een plasmaboog geeft tijdens het lassen fel licht dat schadelijke uv-stralen bevat. Daarom moet een lasser een lashelm of laskap dragen met een donker glaasje. Er zijn tegenwoordig ook flitskappen waarvan het glas automatisch donker wordt wanneer men gaat lassen.

De omgeving van de lasser moet echter ook geen last hebben van het uv-licht dat tijdens het lasproces vrijkomt. Daarom dient een lasser zijn of haar werkplek af te schermen met lasschermen. Door lasschermen te gebruiken kunnen mensen in de omgeving van de lasser niet in de plasmaboog kijken.

Een lasser moet zijn werkplek goed opruimen en moet er voor zorgen dat er geen ongelukken kunnen gebeuren terwijl de lasser aan het lassen is. Door het gebruik van een laskap kan een lasser namelijk weinig van zijn of haar omgeving waarnemen. Naderende heftrucks of personeel dat langs loopt wordt nauwelijks opgemerkt.

Veiligheid op de werkplek
Als een lasser de veiligheidsvoorschriften goed in acht neemt kan het lasproces goed worden uitgevoerd. Veiligheid en gezondheid is echter niet alleen iets dat de lasser zelf moet bewerkstelligen. Het bedrijf waar de lasser werkzaam is moet er voor zorgen dat de lasser de juiste materialen, gereedschappen en kleding krijgt om het werk professioneel uit te kunnen voeren. De arbeidsinspectie in Nederland ziet er op toe dat dit ook gebeurd.

Wat is OP-lassen en waarvoor wordt onderpoederlassen gebruikt?

OP-lassen is een speciaal lasproces dat wordt gebruikt in de werktuigbouwkunde. De afkorting ‘OP’ staat voor onder poeder, het lasproces wordt ook wel onder poederdek lassen of onderpoederlassen genoemd. In het Engels heet dit lasproces Submerged Arc Welding. Bij dit lasproces wordt gebruik gemaakt van een laag vast poeder. Het onderpoederlassen behoort tot het booglassen. De elektrische boog ligt onder een laag poeder. De elektrode die wordt gebruikt is net als bij MIG/MAG lassen afsmeltend en is in feite de lasdraad. Dit houdt in dat er continue nieuwe lasdraad moet worden aangevoerd. Dit gebeurd door aandrijfwieltjes die de lasdraad door de laskop voeren. Hierbij is de afstand tussen de laskop en het werkstuk belangrijk. De laskop van het OP-lastoestel zorgt er voor dat de lasdraad onder elektrische spanning komt te staan. De draad is naast elektrode ook het toevoegmateriaal. De draad wordt in het smeltbad opgenomen. Het OP-lassen is een proces dat zeer productief is.

Er kan in verhouding tot andere lasprocessen snel worden gewerkt. Dit heeft onder andere te maken met het feit dat bij OP-lassen de draad mechanisch wordt toegevoerd vanaf een draadhaspel. Het poederdek wordt eveneens automatisch aangebracht en wordt op de boog gestrooid. Dit gebeurd door de laskop van het OP-lastoestel. Via een trechter wordt laspoeder uitgestrooid rond het einde van de lasdraad. Het poeder komt hierdoor op de lasboog terecht. Tijdens het OP-lassen functioneert het poederdek als de bekleding van de elektrode, net zoals dat gebeurd bij lassen met beklede elektrode. Het poederdek zorgt voor een beschermgas. Daarnaast ontstaat door het poeder een slak op de las. Deze slak beschermt het smeltbad tegen de inwerking van invloeden vanuit de lucht in de omgeving van de lasboog. Niet al het laspoeder verandert in een slak. Het laspoeder dat na het OP-lassen overblijft wordt door een zuiger opgezogen en kan op die manier weer in het lasproces worden gebracht.

OP-lassen kan met verschillende soorten poeder
Bij OP-lassen kan men gebruik maken van verschillende soorten laspoeder. De keuze van de laspoeder heeft invloed op de mechanische eigenschappen van de las. Niet elk poeder is geschikt voor een bepaalde metaalsoort of wanddikte. Over het algemeen worden basische poeders gebruikt voor werkstukken met een grote wanddikte. Voor hogere verwerkingssnelheden wordt gebruik gemaakt van rutielpoeders.

Waar wordt OP-lassen gebruikt?
OP-lassen is een lasproces dat vooral wordt gebruikt in de zware industrie. Hierbij kan bijvoorbeeld gedacht worden aan de offshore en de scheepsbouw. Ook in de apparatenbouw en in chemische industrieën kan OP-lassen worden toegepast. Het OP-lastoestel is omvangrijker dan een MIG/MAG lastoorts die met de hand door een lasser wordt bediend. Daarom wordt OP-lassen over het algemeen niet gebruikt voor moeilijke lasposities en zeer nauwkeurig laswerk met verschillende hoekjes en naden die niet in één rechte baan lopen. OP-lassen is vooral geschikt voor grote lange platen en constructies. Deze komen over het algemeen voor bij schepen of grote opslagtanks voor de chemische industrie. Daarom hebben bedrijven die in deze sectoren actief zijn OP-lastoestellen maar dat hoeft niet. Er zijn ook bedrijven die grote constructies lassen zonder OP-lastoestel. Met name voor de snelheid en de continuïteit is OP-lassen van grote constructies zeer productief.

Wat is TIG lassen en waarvoor is het geschikt?

TIG lassen is een lastechniek. TIG is een afkorting die voluit geschreven staat voor Tungsten Inert Gas. Tungsten is Engels voor Wolfraam en inert gas staat voor het gas dat bij dit lasproces wordt gebruikt. TIG lassen is een lasproces dat geschikt is voor nauwkeurig laswerk. Het TIG lasproces behoort tot het elektrisch booglassen. Er wordt bij dit lasproces gebruik gemaakt van een elektrode die niet afsmelt. De elektrode is gemaakt van wolfraam. Wolfraam is in het Engels tungsten, vandaar de ‘T’ in de afkorting. Aan het wolfraam word soms een klein percentage van andere stoffen toegevoegd om de kwaliteit van de lasboog te optimaliseren. De TIG lasser moet zelf het smeltbad goed in de gaten houden en handmatig toevoegmateriaal in het smeltbad aanbrengen. Bij MIG/MAG lassen wordt dit toevoegmateriaal automatisch door de toorts gevoerd. Het feit dat dit bij TIG lassen niet gebeurd zorgt er voor dat de TIG lasser met één hand zelf toevoegmateriaal in het smeltbad moet aanbrengen. Dit is tijdrovend en nauwkeurig werk maar het zorgt er wel voor dat de TIG lasser de kwaliteit van het smeltbad en daarmee de kwaliteit van de las kan beïnvloeden.

Elektrisch booglassen
Bij TIG lassen wordt gebruik gemaakt van een constante stroomsterkte. Dit wordt ook wel een vallende of verticale stroombronkarakteristiek genoemd. Ook hierin verschilt TIG lassen met MIG/Mag lassen. Bij MIG/MAG lassen wordt namelijk gebruik gemaakt van een constante spanning een zogenaamde vlakke of horizontale stroombronkarakteristiek. Tussen de wolfraam elektrode en het werkstuk ontstaat tijdens het lassen een plasmaboog. De elektrode en het werkstuk mogen elkaar tijdens het lassen niet raken. Tijdens het lassen kan gebruik worden gemaakt van wisselstroom of van gelijkstroom. Wanneer gebruik wordt gemaakt van gelijkstroom is de wolfraam elektrode negatief omdat deze anders tijdens het lasproces zou afsmelten.

Inert gas
Bij TIG lassen wordt gebruik gemaakt van een inert gas dit wordt ook wel een edelgas genoemd. Er zijn verschillende inerte gassen die gebruikt kunnen worden voor TIG lassen. Inerte gassen zijn vaak kostbaar en daarom wordt in de praktijk vaak voor het goedkoopste inerte gas gekozen. Soms wordt gelast met helium maar meestal met argon. Dit is een inert gas omdat het niet sterk reageert op de inwerking van vrijwel alle chemicaliën. Bij actieve gassen reageert het gas wel op de inwerking van chemicaliën en andere stoffen en wordt het materiaal door de ontstane reactieve stoffen aangetast.  Het feit dat dit niet gebeurd bij het inerte gas in het TIG lasproces zorgt er voor dat het materiaal tijdens het TIG lasproces niet wordt aangetast.

TIG lassen levert kwaliteit
Vanwege het beschermingsgas en het handmatig aanbrengen van lastoevoegmateriaal kan een hoge laskwaliteit tot stand worden gebracht. De kwaliteit van TIG lassen zit voornamelijk in de lasser zelf. Een vaardige lasser kan met het TIG lasproces kwaliteit leveren. Hij moet daarvoor het lasapparaat goed instellen en de snelheid van het lassen en het aanbrengen van lastoevoegmateriaal goed op elkaar afstemmen. Daarnaast heeft de TIG lasser voortdurend twee handen nodig tijdens het lassen. Met één hand houdt hij de toorts vast en met de andere hand brengt hij het lastoevoegmateriaal aan. Hierdoor kan hij niet twee handen gebruiken om de lastoorts extra te ondersteunen. TIG lassers bedenken in de praktijk vaak verschillende trucjes om hun handen steun te geven tijdens het lassen. De lastoorts moet namelijk op een bepaalde afstand van het werkstuk blijven. Wanneer er verschillen ontstaan in de afstand tot het werkstuk heeft dat invloed op het lasproces en de kwaliteit van de las.

Waarvoor is het TIG lasproces geschikt?
TIG lassen is zoals eerder genoemd een tijdrovend lasproces. Daarnaast kan een kwalitatief hoogwaardige las worden gelegd. Door deze eigenschappen is TIG lassen vooral geschikt voor aluminium en hooggelegeerd staal zoals roestvast staal. Wanneer dunne laaggelegeerde platen gelast moeten worden is het TIG lasproces ook geschikt. Dit heeft te maken met de nauwkeurigheid van het lasproces en lage lassnelheid die bij het TIG lassen wordt toegepast. Hierdoor kunnen dunne platen nauwkeurig aan elkaar worden gelast. Er moet dan wel rekening worden gehouden met de warmte inbreng die voor het kromtrekken van het werkstuk kan zorgen. Bij specialistisch leidingwerk wordt ook vaak gebruik gemaakt van TIG lassen. Hierbij valt te denken aan leidingen voor de zuivelindustrie. De doorlas in de leiding is door het nauwkeurige TIG lasproces beter waardoor er geen randen in de leiding ontstaan waar bacteriën zich achter kunnen hechten. Bij dikke leidingen wordt soms de grondlaag met TIG gelast en de overige laslagen met MIG/MAG omdat het laatstgenoemde lasproces beduidend sneller verloopt.

Voordelen en nadelen van TIG lassen
Aan elk lasproces zijn voordelen en nadelen verbonden. Bij TIG lassen zijn ook voor en nadelen aanwezig. Dit heeft te maken met het materiaal maar ook met de wensen van de lasser. Er zijn lassers het TIG lasproces niet interessant vinden omdat het tijdrovend is en daardoor niet snel resultaat bied. Andere lassers zijn juist lovend over het TIG lasproces omdat ze hiermee een hoge kwaliteit kunnen realiseren. Hieronder is een overzicht gemaakt van de voor en nadelen van TIG lassen.

Voordelen van TIG lassen:

  • De toevoegsnelheid. Het lastoevoegmateriaal wordt handmatig aangebracht in het smeltbad.  Daardoor is de snelheid waarmee het wordt toegevoegd te bepalen door de lasser zelf. Er kan gekozen worden voor weinig toevoegmateriaal voor dunne vloeilassen of meer toevoegmateriaal voor wat dikkere lassen. Dit is afhankelijk van de dikte van het materiaal dat gelast moet worden en de instelling van het lastoestel.
  • Kwalitatief hoogwaardige las. Met TIG lassen kan een hoge laskwaliteit worden gerealiseerd. Dit komt doordat de lasser invloed heeft op het smeltbad en het lasproces langzaam verloopt. De verschillende lasparameters kunnen onafhankelijk worden geoptimaliseerd. Ook de kans op insluitsels is klein bij dit lasproces.
  • Schoon lasproces. TIG lassen is een schoon lasproces waarbij geen lasspetters ontstaan die het zicht op de het lasproces belemmeren. Het feit dat er geen lasspetters ontstaan zorgt er daarnaast voor dat het werkstuk niet wordt aangetast en bevuild met lasspetters die moeten worden verwijdert. Nabewerking bij het TIG lasproces is eigenlijk niet nodig.
  • Nauwelijks lasdampen. Bij TIG lassen ontstaan nauwelijks lasdampen. Dit is gunstig voor de gezondheid van de lasser. Toch zal ook bij het TIG lasproces voldoende apparatuur aanwezig moeten zijn om de schadelijke dampen af te zuigen. Ook een klein beetje lasdamp brengt schade toe aan de gezondheid van de lasser. Het feit dat er weinig lasdamp aanwezig is bij TIG lassen moet er niet toe leiden dat men afzuiging achterwege laat.
  • Verschillende metalen. Het TIG lasproces kan worden toegepast op vrijwel alle ferro- en non ferrometalen. Bepaalde metalen en plaatdiktes vereisen echter een ander lasproces wanneer factoren als tijd en snelheid een rol spelen.
  • Lasposities. TIG lassen kan in verschillende posities worden gedaan. Daarom kan het breed worden toegepast.

Nadelen van TIG lassen:

  • Langzaam. TIG lassen is een langzaam lasproces. Wanneer tijd en snelheid een belangrijke rol spelen tijdens het lasproces is TIG lassen minder geschikt. Ook voor het vullen van grote naden tussen platen en gaten in een werkstuk is TIG lassen minder geschikt dan andere lasprocessen.
  • Warmte inbreng. De warmte inbreng tijdens het TIG lasproces is hoog. Hierdoor kunnen dunne platen en werkstukken kromtrekken tijdens het lassen. Een lasser moet over veel ervaring beschikken om dit kromtrekken effectief tegen te gaan.
  • Kostbaar. TIG lassen is een kostbaar lasproces. Dit komt door de toepassing van inerte gassen. Deze edelgassen zijn kostbaarder dan actieve gassen. Daarnaast neemt het lasproces veel tijd in beslag waardoor de lasser zijn uren moeten worden terugverdient. Ook de apparatuur zoals de regelelektronica brengt kosten met zich mee.
  • Ervaring. TIG lassen is een complex lasproces en dat heb je niet snel geleerd. Er is veel ervaring voor nodig om een goede TIG lasser te worden.

Wat is lassen en wat doet een lasser?

Lassen is een verbindingstechniek die onder andere in de werktuigbouwkunde wordt gebruikt. Doormiddel van lassen worden materialen aan elkaar verbonden. Hierbij wordt gebruik gemaakt van druk en warmte. De materialen die worden samengevoegd worden vloeibaar gemaakt. Daarmee verschilt lassen van solderen. Bij solderen wordt alleen het toevoegmateriaal vloeibaar gemaakt en niet het materiaal van het werkstuk.

Bij lassen wordt het materiaal van het werkstuk wel vloeibaar gemaakt om een zo stevig mogelijke verbinding te maken. Daarnaast kan bij lassen gebruik worden gemaakt van verschillende soorten toevoegmateriaal. De toevoegmaterialen hebben invloed op de las maar ook op het lasproces zelf.  Een las is een permanente verbinding die niet uitneembaar is zoals een moet-bout verbinding.

Eigenschappen lasverbindingen
Een verbinding die gemaakt is doormiddel van lassen heeft voor en nadelen. De voordelen van lasverbindingen ten opzichte van andere verbindingen zijn:

  • Een verbinding met een las is stevig. Als deze juist is aangebracht is de las even sterk of sterker dan het omliggende materiaal.
  • Een lasverbinding kan eenvoudig worden aangebracht. Er moet vaak wel een voorbewerking plaatsvinden zoals slijpen maar er hoeven geen gaten geboord te worden om bijvoorbeeld een boutverbinding mogelijk te maken.
  • Lasverbindingen zijn als ze goed worden aangebracht bestand tegen temperatuurswisselingen.
  • Een las die goed aangebracht is ziet er netjes uit. In de scheepsbouw kunnen lassen waarmee  huidplaten worden verbonden zeer netjes worden afgewerkt. Dit zorgt er voor dat ze volledig aan het zicht kunnen worden onttrokken waardoor het casco van een schip er uit ziet als één geheel.
  • Daarnaast zorgen lasverbindingen in leidingen er voor dat er geen open naden ontstaan in leidingen. Een goede gladde lasnaad zorgt er voor dat er geen bacteriën achter of in de naad achterblijven. Een lasnaad kan daardoor voor een hygiënische verbinding zorgen.  Ook de stromingsweerstand is bij een goed aangebrachte lasnaad in een leiding beperkt.

De nadelen van lasverbindingen zijn voor een deel het tegenovergestelde van de voordelen van deze verbindingen. De nadelen worden hieronder benoemd.

  • Een lasverbinding kan niet uit elkaar genomen worden zoals bijvoorbeeld een boutverbinding. Wanneer een las niet goed is gelegd moet deze worden weggeslepen of weg gegutst. Dit is zwaar en tijdrovend werk.
  • Lassen gebeurt over het algemeen met veel warmte. Daardoor kan het materiaal of het werkstuk krom gaan trekken.
  • Lassen is een verbindingstechniek waarbij giftige dampen vrij komen. Deze dampen moeten worden afgezogen door een installatie om de gezondheidsrisico’s voor de lassers en de medewerkers die bij hem in de buurt werken te beperken.
  • Voor lassen is naast lasapparatuur ook beschermende kleding en schoeisel nodig die brandvertragend is. Ook een lashelm is nodig om de ogen te beschermen tegen het licht dat van het lasproces af komt. Ook de omgeving moet tegen het licht van het lasproces worden beschermd om lasogen te voorkomen.
  • Niet alle materialen kunnen worden gelast en voor verschillende materialen heb je een specifiek lasproces nodig.

Lasverbindingen hebben voor en nadelen. Voordat je een las goed kunt aanbrengen moet je goed op de hoogte zijn van de veiligheidsaspecten en moet je weten hoe een las moet worden aangebracht. De meeste lassers in Nederland hebben hiervoor een opleiding of training gehad.

Lasprocessen
Er zijn verschillende lasprocessen ontwikkeld door de jaren heen. Elk lasproces heeft eigenschappen die het proces geschikt maken voor een bepaalde materiaalsoort of een bepaalde situatie. In een bedrijf is beschreven welke lastechnieken worden gebruikt voor een bepaald soort materiaal. Deze beschrijvingen zijn gebaseerd op Europese richtlijnen. Sommige bedrijven hebben te maken met Amerikaanse richtlijnen. Deze richtlijnen worden onder andere gebruikt in de offshore.

Op dit moment worden de verschillende  lasprocessen gebruikt door bedrijven. Deze kunnen voor het overzicht in onderstaande hoofdcategorieën worden ingedeeld. Daarbij zijn een aantal specifieke lasprocessen genoemd die onder de categorie vallen.

  • Booglassen: zoals MIG/MAG lassen, Onder Poederdek lassen, TIG lassen
  • Elektrisch weerstandlassen: zoals puntlassen, rolnaadlassen, weerstandstuiklassen
  • Autogeen lassen: hieronder valt alleen autogeen lassen
  • Druklassen: zoals ultrasoon lassen, gasdruk lassen, explosie lassen
  • Bundellassen: zoals laserlassen, röntgenlassen
  • Overige lasprocessen: zoals infraroodlassen, inductielassen, exothermisch lassen

Lasprocessen blijven in ontwikkeling en veranderen met de tijd. Er komen lasprocessen bij en er verouderen lasprocessen.

Lasposities
Er zijn verschillende lasposities die een lasser in de praktijk kan uitvoeren. Over het algemeen worden de positie onder de hand als de meest eenvoudige laspositie genoemd. Dit is positie PA. Daarnaast zijn er de hoeklassen die met PB worden aangeduid. Uit de zij lassen wordt met PC aangegeven. Een hoeklas boven je macht is positie PD. Helemaal boven het hoofd lassen wordt met PE aangeduid. Voor stapellassen wordt van beneden naar bogen de positie PF toegepast. Van boven naar beneden wordt de positie PG gebruikt. Voor pijp lassen worden daarnaast de posities PH, PJ, PK en H-L-45 graden in gebruik genomen.